Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Hippurato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis(1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ copper(II) perchlorate dihydrate

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.038$
$w R$ factor $=0.090$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the Cu atom exhibits a significantly distorted octahedral geometry as a result of the Jahn-Teller effect and the chelating influence of the ligands. In the crystal structure, the molecules are linked by hydrogen bonds into one-dimensional double chains, which are further linked into two-dimensional layers by $\pi-\pi$ stacking interactions between neighbouring aromatic ligands.

Comment

Many copper(II) complexes with carboxylate ligands have been studied due to their magneto-structural correlations (Kato \& Muto, 1988) and copper(II) is prominent in the active sites of many metallobiomolecules (Kain \& Schwederski, 1994). Hippuric acid, an N-protected amino acid, has previously been found to act as an oxygen-donor anionic ligand in the construction of coordination compounds (Morelock et al., 1979, 1982; Grewe et al., 1982; Brown \& Trefonas, 1973; Huber et al. 1988; Jones \& Schelbach, 1988; Darensbourg et al., 1994; Battistuzzi et al., 1996; Severin et al., 1996). However, there are few reported crystal structures of mixed-ligand complexes of hippuric acid and heteroaromatic ligands, such as 1,10-phenanthroline, 2,2-bipyridine and 4,4bipyridine (Antolini et al., 1982; Capllonch et al. 2001). We present here the crystal structure of the title compound, (I).

The title compound contains (hippurato)bis(1,10-phenanthroline)copper(II) complex cations in which the Cu atom is six-coordinated by two O atoms of the hippurate group and four N atoms of two 1,10-phenanthroline ligands, forming a distorted octahedral geometry with the axial positions occupied by pyridyl N atoms (N 2 and N 4) from two 1,10phenanthroline ligands (Fig. 1). The $\mathrm{Cu} 1-\mathrm{O} 2$ distance (Table 1) is longer than other $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond distances, and the $\mathrm{Cu} 1-\mathrm{N} 5$ bond distance trans to it is also elongated. Two trans angles at Cu1 deviate considerably from the linear values of a perfect octahedron (Table 1). As a result,

Received 28 June 2006
Accepted 6 September 2006

Figure 1
The cation and water molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
$\mathrm{CuN}_{4} \mathrm{O}_{2}$ exhibits a significantly distorted octahedral geometry, which can be thought of as resulting from the Jahn-Teller elongation effect and the ligand's chelating influence (Simmons et al., 1987; Hathaway \& Tomlinson, 1970).

In the crystal structure, the acyl radical O atom (O3) and the carboxylate O atom (O2) serve as intramolecular hydrogen-bonding acceptors, receiving H atoms from water molecules, and atoms O 3 and $\mathrm{O} 2 W$ accept H atoms from water molecules, generating intermolecular hydrogen bonds (Table 2). The title complex cations and water molecules are linked by intra- and intermolecular hydrogen-bonding interactions into one-dimensional double chains along the [010] direction, with the aromatic ligands on the outside. These chains are further held together by $\pi-\pi$ stacking interactions between the 1,10 -phenanthroline groups of neighbouring cations [mean interplanar distances: 3.431 (3) and 3.394 (5) Å] into two-dimensional layers parallel to ($\overline{2} 01$) (Fig. 2).

Experimental

An aqueous solution $(5 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.365 \mathrm{~g}, 1.0 \mathrm{mmol})$ was slowly added to a stirred solution of 1,10 -phenanthroline monohydrate $(0.396 \mathrm{~g}, 2.0 \mathrm{mmol})$ and hippuric acid $(0.179 \mathrm{~g}$, 1.0 mmol) in 20 ml ethanol. The mixture was further stirred for $c a$ 30 min at room temperature, and the pH was adjusted to the range 67 with 1 M NaOH solution. The mixture was further stirred for another 2 h and filtered, and the resulting filtrate was allowed to stand at room temperature. Blue prism-shaped crystals were obtained by slow evaporation after one week in a yield of 85% based on the initial $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ quantity. Analysis calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{ClCu}-$ $\mathrm{N}_{5} \mathrm{O}_{9}$: C 53.69, H 3.80, N 9.49%; found: C 53.60 , H 3.86, N 9.43%.

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]-$ $\mathrm{ClO}_{4} \cdot 2 \mathrm{H} 2 \mathrm{O}$
$M_{r}=737.59$
Monoclinic, $P 2_{1} / c$
$a=16.8105$ (13) A
$b=10.1481$ (8) \AA
$c=19.6316$ (14) A
$\beta=106.370(4)^{\circ}$

$$
\begin{aligned}
& V=3213.3(4) \AA^{3} \\
& Z=4 \\
& D_{x}=1.525 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.83 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, blue } \\
& 0.34 \times 0.28 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART CCD APEX-II diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.752, T_{\text {max }}=0.811$
33934 measured reflections 8015 independent reflections 4850 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$ $\theta_{\text {max }}=28.4^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=1.00$
8015 reflections
493 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.03 P)^{2}\right. \\
\quad+0.7 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.029 \\
\Delta \rho_{\max }=0.35 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 4$	$1.9908(19)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.061(2)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.991(2)$	$\mathrm{Cu} 1-\mathrm{N} 5$	$2.1685(19)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.0195(16)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$2.7782(17)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$175.32(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$106.02(7)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{O} 1$	$93.38(7)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 5$	$108.88(7)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$90.98(8)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 5$	$153.69(6)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3$	$95.88(8)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$86.38(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$81.46(9)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$94.95(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$144.91(7)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$97.67(7)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 5$	$80.37(8)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$51.95(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 5$	$96.79(8)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1WA \cdots O2 W^{i}	$0.92(6)$	$1.89(6)$	$2.803(4)$	$172(5)$
O1 $W-\mathrm{H} 1 W B \cdots \mathrm{O} 3$	$0.90(5)$	$2.19(5)$	$2.990(4)$	$148(5)$
O2 $^{\text {(5) }} W-\mathrm{H} 2 W A \cdots 3^{\text {ii }}$	0.78 (3)	$2.10(3)$	$2.876(3)$	$172(3)$
O2 $^{2} W-\mathrm{H} 2 W B \cdots \mathrm{O} 2$	$0.77(3)$	$2.02(3)$	$2.774(3)$	$169(3)$

Symmetry codes: (i) $x, y+1, z$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

All H atoms attached to C atoms and N atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=$ $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The H atoms of water molecules were found in difference Fourier syntheses and the $\mathrm{O}-\mathrm{H}$ distances (Table 2) were refined. The O atoms of the perchlorate anion are disordered and were modelled with split positions of occupancies 0.526 (8) and 0.474 (8). The $\mathrm{Cl}-\mathrm{O}$ distances involving the disordered atoms were restrained to be equal.

Figure 2
The two-dimensional layer parallel to ($\overline{2} 01$) generated by hydrogenbonding interactions and $\pi-\pi$ stacking interactions. Dashed lines indicate hydrogen bonds.

Data collection: $S M A R T$ (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

References

Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. \& Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.
Battistuzzi, G., Borsari, M., Menabue, L., Saladini, M. \& Sola, M. (1996). Inorg. Chem. 35, 4239-4247.
Brown, J. N. \& Trefonas, L. M. (1973). Inorg. Chem. 12, 1730-1733.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Capllonch, M. C., Garcia-Raso, A., Terron, A., Apella, M. C., Espinosa, E. \& Molins, E. (2001). J. Inorg. Biochem. 85, 173-178.
Darensbourg, D. J., Holtcamp, M. W., Longridge, E. M., Klausmeyer, K. K. \& Reibenspies, J. H. (1994). Inorg. Chim. Acta, 227, 223-240.
Grewe, H., Udupa, M. R. \& Krebs, B. (1982). Inorg. Chim. Acta, 63, 119124.

Hathaway, B. J. \& Tomlinson, A. A. G. (1970). Coord. Chem. Rev. 5, 1-43.
Huber, F., Domagala, M. \& Preut, H. (1988). Acta Cryst. C44, 828-830
Jones, P. G. \& Schelbach, R. (1988). Chem. Commun. 19, 1338-1339.
Kain, W. \& Schwederski, B. (1994). Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. New York: Wiley.
Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. \& Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.
Morelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. \& Karraker, D. G. (1982). Inorg. Chem. 21, 3044-3050.

Severin, K., Koch, D., Polborn, K. \& Beck, W. (1996). Z. Anorg. Allg. Chem. 622, 562-570.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Simmons, C. J., Hathaway, B. J., Amornjarusiri, K., Santarsiero, B. D. \& Clearfield, A. (1987). J. Am. Chem. Soc. 109, 1947-1958.

[^0]: © 2006 International Union of Crystallography All rights reserved

